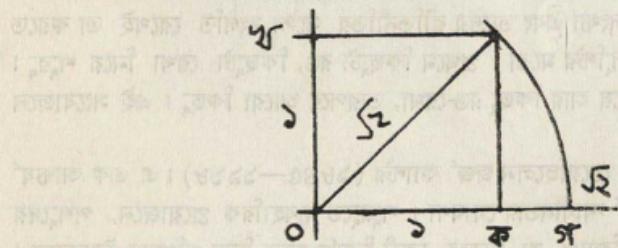


ক্যাণ্টর-এর স্বগ' : গণিতের মুক্তি

মিহির চক্রবর্তী


(প্রথম পর্ব)

গণিত সংপূর্ণভাবে স্বাধীন ; সে দায়বদ্ধ শুধুমাত্র দ্রুটি বিষয়ে—তার অন্তর্গত ধারণাগুলি (Concepts) যেন পৰিবর্ধোধী না হয় এবং ইৰ্তপূর্বে তৈরি ও পরীক্ষিত ধারণাগুলির সঙ্গে নতুন ধারণাগুলি যেন সংজ্ঞার সাহায্যে একটি পরম্পরায় সূর্বিন্যস্ত থাকে । যেমন ধরে নেওয়া যাক ১, ২, ৩, ৪, ...এই পূর্ণসংখ্যাগুলি । মনে করে নেওয়া যাক এদের ধারণা ইৰ্তপূর্বেই তৈরি হয়ে আছে আমাদের মনে এবং এদের ব্যবহারের রীতও আমাদের জানা রয়েছে । এইবার একটি নতুন ধারণা, ধরা যাক মূলদ (rational) সংখ্যার ধারণা, সংজ্ঞি করতে গেলে পূর্ণসংখ্যা এবং তাদের রীতিনীতির সঙ্গে সংগতি রেখেই তা করতে হবে । এ খানিকটা ছবি সংজ্ঞির মতো । প্রথমে কিছুটা ইঙ্গ, কিছুটা রেখা নিয়ে শুরু । তারপরে, তার সঙ্গে মানিয়ে আর কিছু ইঙ্গ-রেখা, তারপরে আরো কিছু । এই সংযোজনে দায় শুধু সংগতি রক্ষার ।

এভাবেই গণিতকে দেখতে চেয়েছিলেন জেজ' ক্যাণ্টর (১৮৪৫—১৯১৮) । এ এক আশ্চর্য' মুক্তির স্বাদ । অভূতপূর্ব' স্বাধীনতার ঘোষণা । শুরুতে ব্যবহারিক প্রয়োজনে, পশ্চদের হিসেব অথবা জীবনের পরিমাপ বা যত্নের বেদী নির্মাণ হওত ছিল গণিতের উচ্চাবনে । কিন্তু অবগ দিনের মধ্যেই সেই বন্ধন ছাড়িয়ে এসোছিল গণিত । কিশোর জ্ঞান বা দৈশ্বর-সামৰ্থ্যলাভের সোপান হিসেবে গণ্য হতে এর খুব বেশি সময় লাগেনি । কিন্তু তবু একটা টান থেকে গিয়েছিল মাটির দিকে । অসংখ্য সংখ্যার সংজ্ঞি বাস্তব কারণেই প্রয়োজনীয় ছিল । সংখ্যার ঝুঁড়ি অনিশ্চেষণীয় বলে ধরে নিতে তাই কোনো প্রশ্ন ওঠেনি । এমনক অমূলদ সংখ্যা $\sqrt{2}$ ইত্যাদি নিয়ে অনেক রহস্যময়তা সত্ত্বেও প্রায় চোখের সামনে অন্তর্ভুক্ত করা যাচ্ছিল এর অস্তিত্বকে । পর পৃষ্ঠার ছবিটি লক্ষ করলুন । ক এবং খ-বিল্ড দ্রুটি যদি ০ থেকে প্রত্যোকে ১ একক দূরে থাকে তাহলে গ বিল্ড ০ থেকে যতটা দূরে তার পরিমাণ $\sqrt{2}$ একক । ক-বিল্ডকে যদি ১ সংখ্যাটির সাথে অভিন্ন ভাবা হয় তাহলে গ-বিল্ডকে $\sqrt{2}$ মনে করা ছাড়া উপায় কী ? এভাবে যে কোনো গাণিতিক ধারণা কোনো ধরনের বাস্তবতার সঙ্গে ঘূর্ণ হয়ে সূচ হলে তার অর্থাদা ব্যক্তি হত । এই মাটি-বৰ্থীনতা যেন একটা টেনে ধরতে চাইছিল গণিতের চলার গতি । একটা স্তরে এসে, বিগত শতাব্দীর চিন্তায় অংশে, এই দায়কে বাঁধন বলেই মনে হয়েছে অনেকের ।

আর এক ধরনের বন্ধনমোচনেরও প্রয়োজন হয়ে পড়াছিল । অসীম বা অন্তহীন সংখ্যারাশি এবং বিল্ডুরাশি নিয়ে গাণিত খেলা করে আসছে বহুকাল থেকে । কিন্তু একটা সাবধান-

বাণীও ভিতরে-ভিতরে কাজ করে গেছে সব সময়। দেকাত^১ যেভাবে তা ব্যক্ত করেছেন তা হল—‘We shall not weary ourselves with disputes about infinite, since, finite as we are, it would be perverse to attempt to make any determination of it, turning it, as it were, into something finite that we can conceive...’। এ তো মনের গঠিকে, বা কল্পনাকে রাশ টেনে ধরার অথবা আশঙ্কার ধৰনি। চল্দি এক, পক্ষ দুই, নেতৃ তিনি, বেদ চার, দিক দশ ; কিন্তু সংখ্যা? সংখ্যা কতগুলি? নিচেরই অসীম। কিন্তু শুধু অসীম বলাই কি যথেষ্ট? গণিতজ্ঞরা তো পৃথির, মূলদ, অমূলদ, বাস্তব—কত রকমের সংখ্যা নিয়েই কাজ করেছেন, এ সব ধরনের সংখ্যার সমষ্টিই তো অসীম। কিন্তু সকলেই কি একই ধরনের অসীম? অনন্তেরও কি প্রকারভেদে আছে? এই ধরনের ভাবনা কি আদো সংগত? প্রাচীনেরা (যেমন গ্যালিলো, লাইবিনিংজ, কর্স, গাউস) বললেন ‘না’। সীমাবদ্ধ মানব কখনও অসীমকে ‘বুঝতে’ পারবে না। সংখ্যার ঝুঁড়ি থেকে যত খুশি সংখ্যা তুলে নিয়ে তোমার গণিত

ତୈରି କର ଆପଣି ନେଇ, କିନ୍ତୁ ମୋଟ କଟଗ୍ରୁଲ ସଂଖ୍ୟା ଆହେ ମେ ବର୍ଣ୍ଣିତେ ଏ ପ୍ରସ୍ତୁତ ଅବାସର, ମୋଟ ସଂଖ୍ୟାର କୋନୋ ସଂଖ୍ୟା ଦିତେ ଚେଷ୍ଟା କୋରୋ ନା । ତାହାଡା ୧ ଅଥବା ୨ ଏର ମତୋ କୋନୋ କିଛି, ମନେ କରା ଯାକ ୟ, ସାଦି ବ୍ୟବହାର କରା ହୁଯା ସମ୍ମନ ପୂର୍ଣ୍ଣସଂଖ୍ୟାର ବର୍ଣ୍ଣିଟିର ଦିକେ ଆଙ୍ଗୁଳ ଦେଇଥିରେ, ତାହଲେ କୀ ମାନେ ହବେ ଏହି ଚିହ୍ନଟିର ବ୍ୟବହାରିକ କ୍ଷେତ୍ରେ ? କୀ ଏର ବାସ୍ତବତା ?

ক্যান্টর যেহেতু চাইছিলেন অসীমের ধারণা নিয়েও পাটীগাণিত রচনা করতে অর্থাৎ অনন্ত দ্যোতক সংখ্যাদের যোগ গুণ ইত্যাদি প্রক্রিয়ার আওতায় নিয়ে আসতে, তাঁকে পূর্বোক্ত দ্রু-ধরনের আপর্যন্তই উভর দিতে হয়েছে। আমার মনে হয় যে খোলা হাওয়া তাঁর মনের পালে লেগেছিল তাঁর শক্তি ছিল অমোঘ এবং ছিল সাহস। প্রথম আপর্যন্ত প্রসঙ্গে তিনি বললেন অনন্তকে মূলত দৃষ্টি ভাগে ভরতে হবে—Potential এবং Actual. এই বিভাজন অবশ্য আর্মিস্টিটেলের সময় থেকেই প্রচলিত। অসীমের প্রথম ধারণার মধ্যে রয়েছে এই দ্বারা যে এমন একটি বৰ্ণড়ি থেকে অর্থাৎ যে বৰ্ণড়িকে Potential infinite এর উদাহরণ বলে ধরা যাবে, সেই বৰ্ণড়ি থেকে যতগুলি খূণি সামগ্ৰী তুলে আনা সম্ভব। এর ভাষ্যার অক্ষুণ্ন। এই বৰ্ণড়িটি সামগ্ৰিকভাৱে গণিতেৰ বিষয়ীভূত হতে পাৱবে না কিন্তু তাঁৰ অক্ষুণ্ন সামগ্ৰী গণিতেৰ অঙ্গ। গণিতেৰ প্ৰয়োজন এমন যে সে সামগ্ৰীৰ উৎস

যেন শেষ না হয়ে যায়। অসীমের স্বতীয় ধারণায় একটি অখণ্ডতা, সমগ্রতা এবং পূর্ণতা। অখণ্ড-অনন্ত, সমগ্র-অনন্ত বা পূর্ণ-অনন্ত। অথচ এই সমগ্রতা সকল সীমায়িত সমগ্রতাকে ছাড়িয়ে। [By an actual infinite is understood a quantum which on the one hand is not variable, but rather is fixed and determined in all its parts as a genuine constant—but which at the same time surpasses in magnitude every finite quantity of the same kind.—ক্যান্টর।] প্রথম ধারণাটি নিয়ে গাণিতের জগতে কোনো স্বল্প ছিল না। স্বল্প ছিল স্বতীয়টি নিয়ে। ভাবা হতো এই সীমাহীন সমগ্রতাই তো ঈশ্বর—পরম অনন্ত (absolute infinite)। সীমায় বৰ্ক মানুষ একে শুধুই 'স্বীকার' করে নিতে পারে, 'বুঝতে' পারে না কখনো। একে নিয়ে আঁক কববে কী করে সে ?

ক্যান্টর আপন্তি করলেন ঠিক এখানটিতেই। তিনি বললেন actual infinity-ও দৃ-ধরনের—যাদের ক্রমাগত বাড়িয়ে চলা স্তুতি এবং যাকে আর বাড়ানো অসম্ভব। প্রথম ধরনের অনন্তের গাণিতের পর্যালোচনার মধ্যে আনা যায়। বৃক্ষিবৃক্ষি দিয়ে বোঝা যায়। ব্যবহার করা যায়। এরা নিজেরা এক-একটি অখণ্ড সমগ্র সত্ত্বা, সসীম সমগ্রতা থেকে অবশ্যই বড় কিন্তু যাকে আরো বাড়ানো স্তুতি। আর স্বতীয় ধরনের অনন্ত—সেই পরম অনন্ত—হচ্ছে ঈশ্বর। উদাহরণের আশ্রয় নেওয়া যাক একটু।

পূর্ণ সংখ্যার মোট সংখ্যা যদি একটি ধারণা বলে স্বীকার করে নেওয়া হয় এবং ওই সংখ্যাকে যদি ω দিয়ে সংচিত করা হয় তাহলে ω একটি বৰ্ধ'নবোগ্য actual infinity। কারণ যে কোনো অসীম সংখ্যা থেকে তা বড় কিন্তু একই সঙ্গে $\omega + 1$, $\omega + 2$ ইত্যাদি সংখ্যার ধারণাও তৈরি করা স্তুতি, অর্থাৎ এক, দুই করে ω -কে আরো বাড়িয়ে চলা স্তুতি ঠিক যেভাবে যে কোনো আমাদের পরিচিত সসীম সংখ্যাকে বাড়ানো যায়। দেখা যাক আরো একটু স্পষ্ট করে।

সেট (বা ঝুঁড়ি)

তার সামগ্ৰী সংখ্যা

[১]

১

(যে সেট-এ শুধু ১ সংখ্যাটি আছে)

[১, ২]

২

[১, ২, ৩]

৩

এইভাবে,

[১, ২, ৩.....]

১

[১, ২, ৩..... ; ক]

$\omega + 1$

[১, ২, ৩..... ; ক, খ]

$\omega + 2$

৩, ৩+১, ৩+২,ইত্যাদি দিয়ে যা চিহ্নিত হল তাকে তো সংখ্যার মতোই কিছু বলতে হবে—বাঁদিকের ঝুঁড়িটিতে ক'টি সামগ্রী রয়েছে এই প্রশ্নের উত্তর তারা। এই চিহ্নগুলির কল্পনা, তাকে সংখ্যার মর্যাদা দান এবং শুধু তা-ই নয়, তাদের নিয়ে গাণিতিক ক্লিয়াকর্ম যোগ গৃহণ ইত্যাদি চালানোর পক্ষত উন্নাবন গাণিত ও দর্শনে ক্যান্টরের এক দুর্মাহসী পদক্ষেপ, প্রায় আডভেঞ্চার। তাঁর নিজের কথায়—‘It is my conviction that the domain of definable quantities is not closed off with the finite quantities and that the limits of our knowledge may be extended accordingly without this necessarily doing violence to our nature.’ কল্পনাকে এভাবে এগিয়ে নেওয়া হয়েছে—সাধারণ সংখ্যার পরে অসীম সংখ্যায়, তাদের ব্যবহারযোগ্য (গাণিতিক অর্থে) করে তোলা হয়েছে। কিন্তু একটা সতর্কতা। আমাদের মানসপ্রকৃতি যেন আহত না হয় এই নতুন কল্পনায়। মন যেন চায় তাকে।

এবাবে শ্বিতীয় আপত্তির প্রসঙ্গ। অর্থাৎ কী অর্থময়তা বহন করবে এই নতুন চিহ্নগুলি? কী যোগাযোগ এর ‘মাটির’ সঙ্গে, নিদেনপক্ষে স্বজ্ঞার (intuition) সঙ্গে? এই জাতীয় প্রশ্নের জবাব দেবার দায় কাঠিয়ে এসেছিলেন গাণিতজ্ঞরা বহুকাল পূর্বেই—প্লেটোর সময় থেকে অথবা হয়ত তারও আগে। কিন্তু তবু এই প্রশ্ন ওঠেও বার বার—কারণ চারদিকের একটা প্রাথমিক থাকে, তার সঙ্গে গাণিত জড়িয়ে থাকে, গণিতজ্ঞ জড়িত থাকেন। গণিতের স্মৃষ্টিদের সঙ্গে উক্মাদের কোনো একটা সীমারেখে টানতে চায় সমাজ। তাই কোনো একটি নতুন গাণিতিক ধারণা বা তত্ত্ব মর্যাদা অর্জন করতে বেশ সময় নেয়, বিশেষ করে তা যদি প্রচলিত ধারণার বিরুদ্ধে যায়। অ-ইউক্লিডীয় জ্যামিতির ভাগ্য এ প্রসঙ্গে স্মরণযোগ্য।

ক্যান্টরের মতে প্রকৃতির পাঠশালা থেকে ইন্দ্রিয় বা বিশুদ্ধ স্বজ্ঞা মারফৎ আমরা তার (প্রকৃতির) সূক্ষ্মতর সাংগঠনিক আকার সম্পর্কে সামান্যই জানতে পারি। বরং প্রকৃতিকে ব্যুৎপত্তে হলে তার সঙ্গে আমাদের মূখ্যমুখ্য হতে হয় কতগুলি ধারণা-কাঠামো (Conceptual framework) সঙ্গে নিয়ে—অর্থাৎ একধরনের দ্রষ্টিভঙ্গি নিয়ে। দেশ ও কাল (Space এবং Time) কে ব্যুৎপত্তে হলে Continuum এই গাণিতিক ধারণার সাহায্যেই তা বোঝার চেষ্টা করতে হবে। অর্থাৎ বিশুদ্ধ যুক্তিপরম্পরালব্ধ ধারণা-কাঠামো তৈরি করে নিতে হবে আগেই, খানিকটা প্রজন্মের মতো। যার মধ্যে প্রকৃতিকে ধরতে হবে এবং তবেই তার আলোর সূক্ষ্মতর গঠনটি সাত রঙে প্রতিভাব হবে। এই ধারণা-কাঠামোগুলি তৈরি করাই গণিতের কাজ, একাজে বহির্বশ্বের ভূমিকা নগণ্য। বরং বহির্বশ্বকে বোঝার কাজে আগে থেকেই এই ধারণা-কাঠামো তৈরি করে নেওয়া প্রয়োজন। কাজেই দায় নেই গণিতের কোনো ৩—এই ধারণাটিকে প্রকৃতিতে অন্তর্দিত করবার। তথাকথিত ‘মাটি’র সঙ্গে কোনো সংযোগ আছে কি নেই কোনো গাণিতিক ধারণার এ প্রশ্ন মূল্যহীন হয়ে পড়ে তাহলে! আজ গণিতের চৰ্চা যেভাবে হয়ে থাকে তাতে প্রশ্নটা ওঠেই না। কয়েকটি প্রাথমিক ধারণার ভিত্তের উপরে একটি

নতুন ধারণা যুক্ত হয়ে যায়। এই ধারণা সংক্ষিতে প্রকৃতি হয়ত গণিতস্তুতাকে উস্কে দিয়ে থাকতে পারে, কিন্তু কোনো অবস্থাতেই দায়বদ্ধ নয় সে প্রকৃতির কাছে। এই হল নিবৃত্তীয় মূল্য, এক পরম মূল্য। চিহ্নিশক্তিকে তার রেখা ও রঙের বা কর্বিকে তার কর্বিতার শব্দগুলির মানে বলে দেবার হাত থেকে রেহাই।

এইভাবে গণিত ক্যান্টরের তরীতে ভেসে এক স্বগৰ্ত্তা দিকে যাত্রা করল যে যাত্রায় তার প্রধান দৃষ্টি বন্ধনই আলগা হয়ে গেছে। এখন আমরা দেখব এই মূল্যের সীমা কোথায়। ধারণাগুলি জুড়ে-জুড়ে একটি কাঠামো বা গণিতের অবয়ব সূচিটির কাজে গণিতশক্তির দায়বদ্ধতা ঠিক কোনখানে। আমরা দেখেছি সসীমের গান্ধি সে ভেঙেছে। এমন অনন্তের সংক্ষিত করেছে যা নিয়ে সে অল্প আয়াসেই খেলা করতে পারে। এ অনন্ত যেহেতু পরম নয়, তাই দ্বিতীয়ের আসনে কোনো আঘাত আসবে না এই নতুন খেলায়। এই অর্থে 'অসীম নিয়ে আলোচনা করলেও গণিতকে দ্বিতীয়ের কাছে জ্বাব-দিহি করতে হবে না। প্রকৃতির কাছেও সে জ্বাবদিহি করতে রাজি নয় অর্থাৎ তার সংক্ষিত ধারণাগুলি বা ধারণাগুলি দিয়ে তৈরি করা কাঠামো কোন বাস্তব প্রকৃতিকে প্রতিফলিত করে বা আদো করে কি না এই প্রশ্ন এখন তার কাছে অবাস্তব। তাহলে সে কোথায় বাঁধবে নিজেকে? কোন স্ব-আরোপিত দায়বদ্ধতায় সে নিজেকে আবদ্ধ করবে?

এর উত্তর 'স্ব-বিরোধিতা' (Contradiction)। গণিতস্তুতার একমাত্র ভাবনা এবং দ্রুতবন্ধন তার সংক্ষিত ধারণাগুলি যেন স্ব-বিরোধমূল্য হয়, ইতিপূর্বে তৈরি ধারণাগুলির সঙ্গে যেন এক সূন্দর পরম্পরায় বিনান্ত থাকে এবং ভাবিষ্যতেও এই ধারণাগুলি থেকে যেন কোনো স্ব-বিরোধের জন্ম না হয়।

ফলত গণিত বিহুজ'গতের কাছে দায়হীন, স্ব-বিরোধমূল্য একটি সূচারু খেলায় এসে পরিণত পায়। এর মধ্যে কোনোরকম 'সত্ত্ব'র অন্তস্থান অর্থহীন হয়ে পড়ে।

অর্থচ ক্যান্টর তা চার্নানি। ছবির তুলনায় ফিরে আসা যাক আবার। শিল্পী তো খেলতেই শুরু করেন প্রথমে। খানিকটা রঙ-রেখার পরে আরো কিছুটা রঙ বা রেখা চাপায়ে-চাপায়ে, tension সংক্ষিত করে, balance রক্ষা করে। ছবিটি কি পূর্ণতা পায় এভাবে, একসময়ে? যদি তা-ই হয় তাহলে কি কোনো সত্ত্বের স্থান আছে এই পূর্ণ হয়ে গঠিত ভিতরে? একটি উনিষিদ্ধ যেমন পূর্ণ হয়ে গঠিত ফলে এবং ফলে একটির পরে একটি কোষ সংযোজন করে করে, যার পরে এই বিশেষ উনিষিদ্ধজীবনের আর কোনো অতিরিক্ত পূর্ণতা নেই। যেমন তার মধ্যে একটি সত্য পাই, যার গভীরে প্রকৃত অর্থে 'খামখেয়ালিলপনা (arbitrariness) নেই। যেন এভাবেই হয়ে গঠিত কথা ছিল। যেন একটা পর্যায়ের পরে মনে হয় বেশ, এখানেই পূর্ণতা, এখানেই ইতি টানা হোক।

ক্যান্টরের গাণিতিক ধারণা সংক্ষিতের কাজে, আমার মনে হয়, এমনই কোনো পূর্ণ হয়ে গঠিত অঠার বোধ কাজ করে। কোনো নতুন ধারণা যখন প্রথম কোনো গণিতস্তুতা নিয়ে

আসতে চান তাঁর আলোচনা ক্ষেত্রে তখন তা একটি চিহ্নমাত্র। অর্থাৎ প্রথমে আসে একটি নতুন চিহ্ন (যে যেমন পূর্বের উদাহরণে)। কিন্তু এই চিহ্নটির কাছে কিছু আশা করেন এর স্বত্ত্ব। তাই সে চিহ্নে একের পরে এক গুণ আরোপ করতে থাকেন তিনি। এ গুণাবলী হল নবাগত চিহ্নের প্রারম্ভে ধারণাগুলির সঙ্গে সম্পর্কসমূহ। যেমন যে সমস্ত সসীম সংখ্যা থেকে বড় হোক। যে চিহ্ন থেকে ছোট যা-ই হোক তা যেন সসীম সংখ্যা হয়। যে থেকে যে কোনো সসীম সংখ্যা বিশ্লেষণ করলে যেন যে-ই থেকে যায়। এই রকম সমস্ত দার্শন করতে থাকেন গাণিতস্তুতা তাঁর নবাগতের কাছে। এই সম্পর্ক-গুলি তার সজ্ঞা। স্নাটা তাঁর নবাগত চিহ্নটিকে ত্রুটি সাজিয়ে তোলেন ‘কুস্তুমে রাতনে’। এরপরে তাঁকে থামতে হয় একসময়। মনে হয় হাঁ, ঠিক এ-ই তো আমি চেয়েছি। এই তো ঠিকমতো ‘হরে গঁও’ হল। পূর্ণতা হল। ক্যাল্টেরের নিজের লেখা থেকে একটি উদ্বৃত্তি, একটু ‘দীৰ্ঘ’, কিন্তু তৎপর্যমান্তরে :

‘The process with the correct formation of concepts is in my view always the same. One lays down a thing without properties which at first is nothing other than a name or a sign A. One then duly gives to it different even infinitely many predicates, whose significance is known through already present ideas, and which must not contradict one another. In this way the relations of A to concepts already present and especially to similar concepts are determined. With this one has then completely finished; all conditions for the awakening of the concept A which slumbered within us are present, and it comes completed into being, furnished with that intro-subjective reality which is generally all that can be demanded from concepts.’

এ শুধু একটি তৈরি কাঠামোর সঙ্গে নতুন কিছু, সংগতি বিনিষ্ট না করে, জুড়ে দেওয়া নয়—তার থেকে আরো বেশি কিছু। যা সংলগ্ন করতে চাইছি তার যেন একটি নিজস্ব পরিপূর্ণতা থাকে এবং ফলে সমগ্র কাঠামোটিতে নবসংযুক্ত বিষয়টি সম্পূর্ণভাবে অন্তর্গত হয়ে ওঠে, বাঢ়িত মনে হয় না, মনে হয় না আর তাকে ছেঁটে ফেলা যায় মূল কাঠামো থেকে। গণিতের শরীরের এই বেড়ে ওঠার একটা স্বাভাবিকতা থাকে, একটি গাছের বেড়ে ওঠার মতো হয়ত।

এবং সে কারণেই কোনো সত্ত্বে হয়ত থাকে গণিতে।

যে স্বর্গ ক্যাল্টের গড়লেন সেখানে গণিত পেল অফুরন্ট মুক্তির স্বাদ। আজ গণিতের মূল ধারা এই স্বর্গ থেকেই উৎসারিত। কিন্তু এ কাহিনীর শেষ এভাবে করা যাচ্ছে না—‘অতঃপর (স্বর্গ) রাজ্যে সর্বশ্রেষ্ঠ সুখ ও শান্তি বিরাজ করিতে লাগিল।’ অবিচ্ছিন্ন শান্তিতে ফাটল দেখা দিয়েছে, অশান্তি আঘাত করছে দরজায়। গণিত যেন একটু

অস্ত্র হয়ে উঠেছে এই স্বর্গ-সূর্যে। সে কি আবার মৃষ্টি প্রত্যাশী—এবার ক্যান্টেরের স্বর্গ থেকে? এ প্রশ্নের আলোচনা বারাস্তরে। □

সহায়ক রচনাপর্যাল্পনা :

Cantorian Set theory and limitation of size, Michael Hallett, Clarendon Press, 1986

Mathematics, the loss of certainty, Morris Kline, Oxford University Press, 1980

Note :

Fuzzy set theory was conceived by Prof. Lotfi Zadeh to present mathematical model for vagueness. Since its introduction in 1965 researchers from all over the globe have joined in the development of this novel idea both in its theoretical and applicational aspects. In India also considerable interest has been generated among the academicians in this new theory and so far two national-level seminars : the first in the Department of Pure Mathematics, University of Calcutta in 1984, and the second one in the Department of Mathematics, University of Tripura, 1991. The next such seminar is being held by the Depts. of Mathematics and Computer Science, Visva Bharati, this year from Feb. 26 to 28. Besides the above mentioned departments, researchers of ECSU, I.S.I Calcutta have taken pioneering role in the enhancement of research in the applications of Fuzzy set theory. The following is a partial list of centres in India where research work is going on in this field. The specific areas of activites are also mentioned.

<i>Centre</i>	<i>Area of activites</i>
Dept. of Pure Math. Cal. Univ.	Fuzzy relations, Fuzzy logic, Category theoretic approach to fuzzy sets, Fuzzy algebraic structures and Fuzzy topology, Applications to decision theory.
E C S U I S I, Calcutta	Application of Fuzzy set theory in image processing logic programming and other related areas.
Dept. of Math. Visva Bharati	Fuzzy topology, applications.

Dept. of Math.	Fuzzy topology.
Burdwan Univ.	
Dept. of Math.	Fuzzy algebra and topology.
I I T, Kharagpur	
Dept. of Electrical	Applications.
Engineering	
I I T, Kharagpur	
Dept. of Math.	Fuzzy topology and Categories.
B H U	
Dept. of Math.	Fuzzy topology and applications to decision theory.
Tripura University	
Dept. of Math.	Fuzzy topology.
Allahabad Univ.	
School of Physical Science, J N U	Fuzzy algebra and applications
Dept. of Appl. Math.	
Cochin Univ.	
Waltair	
Dharwad	
Ramanujan Institute	
This list is only a partial one. A society on Fuzzy set theory and Information processing has been founded in 1986 and the society has been the co-sponsors of the seminars held so far. To the knowledge of this correspondent five Ph. D. theses have been completed exclusively on Fuzzy set theory so far, the first being done at the Dept. of Pure Math. Cal. Univ. Besides, there are numerous M. Phil. theses submitted.	

It is observed that people belonging to various disciplines other than Mathematics, e. g., Computer Science, Philosophy, Electronics and Economics are being more and more drawn towards this theory.